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Abstract

We study whether Gated Recurrent Unit (GRU) forecasts can translate into investable
improvements for cryptocurrency portfolios under realistic constraints. Using a repro-
ducible, leakage-free walk-forward pipeline (data → preprocessing → GRU training with
a direction-aware loss → portfolio formation), we restrict the universe to the Top-5 coins
by market capitalization and enforce a 35% single-asset cap with weekly rebalancing. We
compare a GRU-driven allocator against (i) a näıve historical-mean allocator and (ii) a
capped, market-weighted benchmark, under two objectives: Maximize Expected Returns
and Maximize Quadratic Utility.

Out-of-sample evaluation (90 days following each training window) shows that, at a
daily horizon, forecast accuracy is modest but non-trivial. Under Maximize Expected
Returns, the GRU portfolio consistently improves upon the näıve baseline on level and
risk metrics; however, mean daily outperformance versus the capped benchmark is not
statistically significant. Under Quadratic Utility, GRU and näıve allocations are effectively
indistinguishable—consistent with a small, concentration-capped universe where the risk
penalty dominates modest differences in expected returns. All results are pre-cost.

This early release is limited in time and scope: a short evaluation window dominated
by a bearish regime, 50 hyperparameter trials per model, and a Top-5 universe. We outline
concrete extensions: more extensive tuning (200+ trials), longer horizons through the
present, regime-conditioned analysis (volatility/bull–bear), broader universes (Top-20+),
and architectural comparisons (GRU vs. LSTM vs. Transformer) within the same portfolio-
centric evaluation framework.

1. Introduction

Cryptocurrency markets exhibit extreme volatility, heavy tails, and rapid regime shifts that
complicate forecasting and portfolio construction. Deep learning sequence models have be-
come effective tools for extracting predictive structure from non-stationary time series (Lim
and Zohren, 2021). Among them, the Gated Recurrent Unit (GRU) provides a compact
gated architecture that mitigates vanishing gradients and often matches LSTM performance
with fewer parameters (Cho et al., 2014; Chung et al., 2014). In crypto specifically, compar-
ative studies report that gated RNNs—including GRUs—often outperform näıve statistical
baselines on out-of-sample error metrics (Bouteska et al., 2024; Seabe et al., 2023; Mur-
ray et al., 2023; Kaur et al., 2025; John et al., 2024), complementing early evidence that
machine-learning signals can be predictive in liquid coins (Alessandretti et al., 2018).

Objective. We test whether GRU-based return forecasts translate into portfolio im-
provements in a concentrated, investable universe. We restrict the investable set to the
top five cryptocurrencies by market capitalization (reselected at each rebalance), and we
compare a GRU-driven allocator against two concrete baselines:
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• Capped market-cap benchmark: a market-cap-weighted index of the same top-
five universe with a 35% single-asset cap to limit concentration.

• Näıve expected-return estimator: portfolio construction driven by rolling historical-
mean returns (a standard, low-assumption baseline) (Hyndman and Athanasopoulos,
2021).

Method. We use a two-stage, walk-forward pipeline: (i) a GRU predicts one-step-ahead
asset returns from OHLCV and technical features; (ii) forecast vectors and an empirical
covariance feed a long-only optimizer with a 35% per-asset cap to produce portfolio weights.
We evaluate economic performance (cumulative return, Sharpe/Sortino, max drawdown,
tracking error and information ratio versus the capped benchmark) and forecast diagnostics
(RMSE/MAE and directional accuracy). In this early release, we do not debit transaction
costs or trade frictions; all results are thus pre-cost.

Contributions. Relative to broader architecture comparisons, we offer: (1) a focused
GRU-only study that measures portfolio value-add against two strong baselines (capped
market index; näıve estimator); (2) a concentration-aware benchmark that mirrors investa-
bility constraints (top-five with a 35% cap); and (3) a clean, walk-forward experimental
design that aligns forecasting and portfolio formation to reduce look-ahead and selection
bias (Bouteska et al., 2024; Murray et al., 2023; Seabe et al., 2023; John et al., 2024).

2. Related Work

2.1. GRUs and deep sequence models for time series

The Gated Recurrent Unit (GRU) introduced compact gating and state updates that mit-
igate vanishing gradients while reducing parameter count relative to LSTMs (Cho et al.,
2014). Early empirical comparisons reported that GRUs often match LSTM performance
across language and sequence benchmarks with fewer parameters and faster training (Chung
et al., 2014). More broadly, deep learning for time series has progressed from classical RNNs
to gated RNNs, temporal CNNs, and attention-based models, with consistent guidance on
regularization, normalization, and walk-forward validation for non-stationary data (Lim and
Zohren, 2021). We leverage these design lessons but focus deliberately on GRUs to isolate
whether a lightweight gated architecture can translate predictive structure into portfolio
value.

2.2. Cryptocurrency return predictability and ML baselines

A growing body of evidence suggests that machine-learning features can capture short-
horizon structure in major cryptocurrencies, though effect sizes are unstable and regime-
dependent. Early work documented that feature-based models—momentum, liquidity, and
market-microstructure covariates—can improve directional accuracy relative to näıve base-
lines on liquid coins (Alessandretti et al., 2018). More recent crypto-specific comparisons
report gated RNNs (GRU/LSTM) outperform simple statistical baselines on out-of-sample
prediction metrics, especially when models are trained with careful walk-forward protocols
(Bouteska et al., 2024; Seabe et al., 2023). In our study, we retain a näıve expected-return
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comparator (rolling historical mean), consistent with standard forecast-baseline practice in
time-series analysis (Hyndman and Athanasopoulos, 2021).

2.3. From forecasts to portfolios: economic value of predictions

The crucial step—often underemphasized—is converting forecast improvements into eco-
nomically meaningful portfolio outcomes. Studies that connect crypto forecasts to trading
rules generally find that risk-adjusted gains hinge on disciplined rebalancing, position caps,
and robust evaluation (e.g., walk-forward splits and pre- versus post-cost reporting) (Murray
et al., 2023; John et al., 2024). Within deep-learning architectures, GRU- and LSTM-based
signals have shown potential when paired with conservative position sizing and risk controls,
though performance can be sensitive to universe definition and feature leakage (Kaur et al.,
2025; Bouteska et al., 2024). Our design follows this line by (i) separating forecasting from
allocation, (ii) imposing long-only and single-asset caps, and (iii) benchmarking against a
concentration-controlled market-cap index built on the same investable set.

2.4. Capped market-cap indices and concentration control

Market-cap weighting concentrates risk in the largest asset(s), especially in small uni-
verses such as the top-five cryptocurrencies. Practical index construction therefore employs
single-constituent caps and periodic rebalancing to balance representativeness and diver-
sification. Our benchmark mirrors this practice via a 35% per-asset cap and the same
selection/rebalance schedule used by the strategy, ensuring that performance comparisons
reflect forecast value rather than differences in investability or concentration.

2.5. Broader deep-learning approaches to portfolio construction

Beyond GRU-based forecasting, several adjacent lines inform how deep learning can drive
portfolios:

Attention and Transformer-style models. Advances in attention mechanisms and se-
quence modeling have broadened the toolbox for time-series representation, often improving
long-horizon dependency modeling and feature selection (Lim and Zohren, 2021). While
our study deliberately focuses on GRUs, the same two-stage design (forecast → allocate)
extends to attention-based encoders.

Policy learning and allocation rules. An orthogonal strand learns policies (trading
rules) directly rather than forecasting returns first. Empirical results suggest that risk-
adjusted outcomes depend more on evaluation discipline—walk-forward splits, position caps,
and pre/post-cost reporting—than on any single model family (Murray et al., 2023; John
et al., 2024). We adopt these evaluation principles here but stay with a forecast-first pipeline.

Robust optimization and ensembling. Studies that connect ML signals to portfolios
often stabilize weights via constraints, shrinkage, and simple ensembling; conservative po-
sition sizing is a recurring ingredient (Kaur et al., 2025; Bouteska et al., 2024; Seabe et al.,
2023). Our long-only, 35% cap and näıve-mean comparator (Hyndman and Athanasopou-
los, 2021) serve this stabilizing role and keep the focus on the incremental value of GRU
forecasts.
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3. Experimental Approach

3.1. Data

Provenance and tooling. All data engineering is performed with our in-house Kallos

suite developed by the author: kallos-data1 for ingestion, storage, feature computation,
and index construction. The pipeline retrieves daily OHLCV and market capitalization from
the CoinGecko API2, persists the raw and processed tables in PostgreSQL, and exposes
modular “processors” for indicators, signals, and index calculation.

What is extracted. For each asset in the investable universe we store: coin metadata
(identifier, symbol), and a time series of open, high, low, close, volume, and market capi-
talization at daily frequency. The canonical fact table is keyed by (asset id, date) and
enforces type-stable numeric columns to avoid floating-point drift. Where the source pro-
vides splits/renames or chain migrations, we apply the repository’s built-in normalization
rules to maintain a continuous series.

Derived computations (features). The data project computes a library of techni-
cal features used by the forecaster in §2.2, including: (i) moving averages (SMA/EMA
across short, medium, and long windows), (ii) momentum/oscillators (rate of change, RSI),
(iii) trend/volatility pairs (MACD, Bollinger bands), (iv) volume-scaled indicators (volume
EMA, money-flow style ratios). Exact parameter grids (e.g., SMA ∈ {10, 20, 50, 100, 200};
RSI ∈ {7, 14, 21}) are specified in the repository’s processor configs and fixed prior to model
tuning to avoid leakage.

Universe definition (Top-5). At each rebalance boundary we form the investable uni-
verse as the Top-5 cryptocurrencies by market capitalization computed from the same daily
store. (If a stablecoin enters the Top-5, we follow the rule defined in our index method-
ology—exclude it or keep it—so that the benchmark and strategies use the identical rule
set.) Constituents are selected on the final trading day of month m and become effective
for month m+1.

Capped market-cap benchmark (implementation-equivalent to our trading con-
straint). To ensure a fair comparison against a passive alternative that shares our investa-
bility and concentration constraints, we construct a capped market-cap index on the Top-5
universe using the index calculator shipped in kallos-data (see crypto index calculator docs.md3

for full details).

1. Initial weights (cap-weighted). On the rebalance date, compute

w
(0)
i =

mcapi∑
j∈U mcapj

, i ∈ U (Top-5).

2. 35% cap via iterative redistribution. Apply a single-name cap c = 0.35. Set wi ←
min{w(0)

i , c}, sum the excess E =
∑

i(w
(0)
i − wi)+, and redistribute E proportionally

1. https://github.com/josemarquezjaramillo/kallos-data
2. https://www.coingecko.com/en/api
3. https://github.com/josemarquezjaramillo/kallos-data/blob/main/kallos/documentation/data_

processing/crypto_index_calculator_docs.md
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over the uncapped set Ufree = {k : w
(0)
k < c}:

wk ← wk + E · wk∑
ℓ∈Ufree

wℓ
.

Repeat until wi ≤ c for all i, then renormalize so
∑

iwi = 1.

3. Between rebalances (buy-and-hold drift). On day t between rebalances, weights
evolve with relative returns and are renormalized:

w̃i,t = wi,t−1 ·
Pi,t

Pi,t−1
, wi,t =

w̃i,t∑
j w̃j,t

.

4. Index level. With base value Index0 = 1000, the daily return is

rt =
∑
i∈U

wi,t−1

(
Pi,t

Pi,t−1
− 1

)
, (1)

Indext = Indext−1 (1 + rt). (2)

5. Data quality and maintenance. If an asset lacks a price on day t, its weight is
temporarily redistributed proportionally across available names for that day; delisted
names are removed at the next rebalance with proportional reallocation.

Reproducibility notes. All steps above are parameterized in the author’s repository
(e.g., top n constituents=5, max constituent weight=0.35, rebalance cadence). We
freeze these parameters for the entire study and log the exact configuration files and database
snapshot timestamps used for the experiments.

3.2. Modeling: preprocessing, tuning, training, and evaluation (via
kallos models)

Tooling stack and package layout. All modeling is implemented in the author’s pack-
age kallos models4, with Darts for time-series containers and GRU wrappers (Herzen
et al., 2021), Optuna for Hyper-Parameter Optimization (HPO) (Akiba et al., 2019), and
PyTorch backend (Paszke et al., 2019).

Preprocessing (feature transformations and leakage control). We construct su-
pervised samples from daily OHLCV-derived features (§3.1), applying group-specific trans-
formations and enforcing leakage-safe fitting (scalers fit on training folds only; frozen on
validation/test). As summarized in Table 1, we group transforms by feature family.

Dimensionality reduction (price block). Because price-derived features (OHLC, re-
turns, price/MA ratios) are highly collinear, we apply PCA to the standardized price-feature
block and retain the top k=2 components per asset. PCA is fit only on each step’s training
portion and applied unchanged to that step’s validation and 90-day OOS periods (?Pe-
dregosa et al., 2011).

4. https://github.com/josemarquezjaramillo/kallos_models
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Table 1: Feature normalization strategy used in this study. Transformations are fit on
training folds only and applied to validation/test with frozen parameters (no look-
ahead).

Feature Group Example Features Normalization
Method

Key Advantages / Rationale

Price-based
(OHLC)

Open, High, Low,
Close; price/MA ratios

Log returns or
price-to-MA ratios;
per-asset
standardization; PCA
on price block (k=2,
train-only fit)

Stabilizes variance; removes
multicollinearity in the price block via
PCA, improving conditioning for the
learner (Siami-Namini et al., 2018).

Volume /
Market-Cap

Trading volume;
Market cap

log(1+x) transform +
per-asset
standardization

Compresses right-skewed, heavy-tailed
distributions; improves numerical
stability for learning.

Bounded
oscillators

RSI, Stochastic, MFI Rolling min–max to
[0, 1] (windowed;
past-only)

Preserves natural bounds and
comparability across assets/horizons;
avoids leakage via trailing-window
min–max (implementation detail of this
project).

Unbounded
“difference”
indicators

EMA diff, MACD diff,
Price–BB diff

Robust scaling via
quantiles (per asset)

Reduces outlier leverage while keeping
data centered—useful in crypto’s
heavy-tailed regimes (Alessandretti
et al., 2018).

Rate of Change
(ROC)

Price ROC; Volatility
ratio

Signed log transform +
per-asset
standardization

Dampens extremes yet preserves
directionality for sign-aware objectives;
improves stability.

Target and data splits. The target is one-day-ahead arithmetic return, yt+1 = Pt+1/Pt−
1. We adopt walk-forward optimization (rolling origin) with an expanding static
start: train to a step end, validate on the tail, then deploy the tuned model for the subse-
quent 90-day OOS block. This matches standard practice (Hyndman and Athanasopoulos,
2021) and the operational use in §3.3.

Model: GRU. We use a Darts GRU forecaster. Tunables include hidden size, layers,
dropout, input chunk ℓin, ℓout=1, learning rate, weight decay, gradient clip, and optimizer.
We disable teacher forcing for single-step forecasting, apply early stopping, and clip gradi-
ents.

Custom loss function (and related literature). We train with a direction-selective
MSE that up-weights errors when the predicted and true returns have opposite signs. Let
dt = 1{ŷt yt > 0} (1 if the signs agree; 0 otherwise, with ties treated as wrong) and let
λ > 1 be the direction penalty. The per-sample weight is wt = dt + λ(1− dt), and the loss
is

L = meant

[
wt (ŷt − yt)

2
]

(3)

Implemented as a torch.nn.Module, it integrates with Darts’ PyTorch models. This
aligns with recent work on custom/asymmetric losses for trading-oriented forecasting—e.g.,
MADL (Michańków et al., 2022), GMADL (Michańków et al., 2024), Dessain’s down-
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side/asymmetric objectives (Dessain, 2023), and DI-MSE (Yin, 2023) — which overweight
misdirection, downside, or tails to better reflect economic use.

Hyperparameter optimization (walk-forward). We tune the GRU with Optuna (Ak-
iba et al., 2019) using a static start and expanding-window protocol (walk-forward). Each
trial is fit on K folds (validation at each fold’s tail), then deployed for the subsequent 90-day
OOS block.

Search space (per trial). We optimize

Θ = {λ,
hidden dim,

n rnn layers,

dropout,

batch size,

input chunk length,

learning rate}

with:

• λ ∈ {1, 2, 3, 4, 5} (directional penalty in the custom loss);

• hidden dim ∈ {32, 64, 128, 256};

• n rnn layers ∈ {1, 2, 3, 4};

• dropout ∈ [0.0, 0.7];

• batch size ∈ {32, 64, 128};

• input chunk length ∈ [30, 70] (days);

• learning rate ∈ [10−5, 10−2] (log-uniform).

The forecast horizon is fixed to output chunk length = 1.
Objective across folds (compact form). Let RMSEk(Θ) and DAk(Θ) be fold-k

metrics. We optimize two aggregated objectives:

J1(Θ) = K−1
K∑
k=1

RMSEk(Θ) (minimize), (4)

J2(Θ) = K−1
K∑
k=1

DAk(Θ) (maximize). (5)

We use a multi-objective sampler (NSGA-II) and persist each study for auditability (Akiba
et al., 2019).

Trials and accounting. We run 50 trials per model and tune 102 models total
(≈ 5,100 trials). Completed trials are not rerun when resuming studies.
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Early stopping. Each fold trains with early stopping: max epochs = 1000, patience
= 50, min ∆ = 5×10−4 on validation loss. Validation series/covariates are passed explicitly
so the monitored quantity is correct.

Deployment. For each asset/step we select Θ⋆ from the study, retrain on the full
in-sample window, and generate daily predictions for the next 90 days OOS (used in §3.3).

Final training and evaluation. For each asset/step we train a production GRU on the
entire in-sample window up to the step end date and persist the artifacts needed for the
90-day OOS deployment:

1. Data load. Pull all rows up to the step end date from the feature store (same feature
groups as in tuning).

2. Fit transformer. Create a ColumnTransformer and fit it on the full in-sample
feature set; transform features to a normalized dataframe (train-only fit at this stage,
no OOS rows).

3. TimeSeries conversion. Build Darts TimeSeries for the target and past covariates
(same frequency as the dataframe index).

4. Trainer config. Use a PyTorch-Lightning trainer with max epochs = 1000, early
stopping (patience = 50, min ∆ = 5×10−4), and monitor=train loss.

5. Instantiate model. Create the GRU with the selected hyperparameters Θ⋆ and pass
the trainer kwargs.

6. Fit. Train on the full in-sample TimeSeries with past covariates; early stopping
monitors train loss.

7. Persist artifacts. Save the trained model to {study name}.pt and the fitted scaler
to {study name} scaler.pkl. These artifacts are loaded verbatim in the inference/evaluation
stage.

8. OOS predictions. The resulting model is then used to generate daily predictions
for the subsequent 90 calendar days (handled in our evaluation pipeline) which feed
the weekly-rebalanced portfolio in §3.3.

Notes. (i) Unlike tuning—where scalers are refit per fold—production training fits the
transformer once on the full in-sample set to match final deployment. (ii) Early stopping
monitors train loss because no validation slice is supplied in this stage; this acceler-
ates convergence while preserving the “train-on-all in-sample” objective. (iii) Using the
study name prefix guarantees the correct model–scaler pairing at inference time.

3.3. Portfolio construction and backtesting (via kallos portfolios)

Framework overview (third-party libraries). Portfolio experiments are implemented
in the author’s package kallos portfolios5, which follows a layered design: data/storage

5. https://github.com/josemarquezjaramillo/kallos_portfolios
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→ predictors/models → optimisers → simulators → evaluation/analysis. We rely on three
external libraries in this stage: PyPortfolioOpt for mean–variance optimization and linear
constraints (Martin, 2021; ?), vectorbt for high-performance, NumPy/Numba-accelerated
backtesting (Polakow, 2025), and QuantStats for performance analytics and reporting (Aroussi,
2021).

Strategies compared. We evaluate three strategies under identical calendars and con-
straints:

1. GRU-driven portfolio. Expected returns µ̂t come from §3.2 (7-day-ahead fore-
casts), aligned to the next weekly rebalance by the GRU simulator.

2. Näıve estimator portfolio. Rolling historical-mean returns provide µ̂t.

3. Capped market-cap benchmark. The passive comparator from §3.1 with a 35%
single-asset cap (same universe and cap as the optimised strategies).

Optimization details (PyPortfolioOpt). At each weekly rebalance we optimize port-
folio weights over the current Top-5 universe subject to long-only and concentration limits,

1⊤wt = 1, 0 ≤ wi,t ≤ 0.35 ∀i,

using pypfopt.EfficientFrontier with linear constraints (weight bounds, add constraint).
We evaluate two objectives:

• Max expected return: max
w

µ̂⊤
t w.

• Quadratic utility: max
w

U(w; δ) = µ̂⊤
t w − δ

2 w
⊤Σtw, δ > 0, where δ is the risk-

aversion parameter. We use the standard of δ=1.

Here µ̂t are expected returns from §3.2 (or the näıve estimator), and Σt is the sample
covariance computed on the investable set using a rolling 365-day look-back. We use the
SLSQP solver and clean weights after optimization (PyPortfolioOpt API).

Backtesting engine (vectorbt). Execution uses a weekly schedule (every 7 days);
weights apply at each rebalance and drift between rebalances. The simulation is per-
formed with vectorbt, which operates on pandas/NumPy arrays and is accelerated by
Numba—enabling fast, vectorized portfolio modeling and analysis (Polakow, 2025).

Performance analytics (QuantStats). For each strategy–objective pair we generate
tear sheets and a consolidated comparison report using QuantStats (stats, plots, reports)
to compute standard metrics (total/annualized return, volatility, Sharpe/Sortino, max
drawdown, rolling stats) (Aroussi, 2021).

Evaluation protocol. Calendars. Rebalances occur every 7 days (e.g., Mondays). The
investable universe each day is the current month’s constituents of the capped market-cap
benchmark (§3.1); the simulator updates the universe on month-change. Forecast alignment.
GRU predictions are mapped to the next rebalance date; if an asset lacks a prediction on a
given date, documented fallbacks are applied before optimization. Consistency across ob-
jectives. We run min volatility, max sharpe, and max expected returns under identical
constraints (long-only,

∑
w = 1, wi≤0.35) using the same universe and rebalance schedule.
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Figure 1: Residual distributions (actual − forecast) per coin over the 90-day OOS window.
Top row: BTC, ETH, XRP; bottom row: DOGE, BNB.

4. Results

At a glance. (1) Forecasts: GRU achieves modest directional accuracy at daily frequency;
error shapes differ by coin (Fig. 1). (2) MER portfolios: GRU narrows the gap to the
capped benchmark and clearly outperforms the Näıve allocator on level/risk metrics, but
daily mean outperformance is not statistically significant (Tables 2–6). (3) QU portfolios:
GRU and Näıve behave nearly identically under quadratic utility; both track the benchmark
with slightly milder tails (Tables 3–9).

4.1. Forecast evaluation (five case studies)

We evaluate five representative models—BTC, ETH, XRP, DOGE, BNB—trained through
2023-12-31 and deployed for the next 90 calendar days (Q1 2024). Metrics include
RMSE, MAE, directional accuracy (DA), rank correlations, and trading diagnostics; see
§3.2 for the walk-forward protocol and §3.3 for how forecasts feed portfolios.

Residual diagnostics. We define residuals as rt = yt − ŷt (positive = under-forecast).
Common bins (Freedman–Diaconis) and symmetric axes enable shape comparison across
assets.
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Takeaway. BTC shows the tightest spread; XRP skews slightly positive (mild under-
forecasting); DOGE/BNB exhibit heavier right tails, consistent with jumpier dynamics.
These asymmetries matter once forecasts are mapped into constrained portfolios.

4.2. Portfolio results

We compare three strategies under two objectives: GRU-driven, Näıve (historical mean),
and the capped market-cap benchmark. Rebalancing is weekly, the universe is the Top-5
with a 35% per-asset cap (§3.3). We report cumulative returns (Fig. 2), core perfor-
mance (CAGR, Vol, Sharpe, Max DD, Calmar), additional stats (Total return, Win rate,
VaR/cVaR), and daily-return hypothesis tests.

Figure 2: Cumulative returns by objective. Top: Maximize Expected Returns (MER):
GRU, Näıve, Benchmark. Bottom: Maximize Quadratic Utility (QU): same
three strategies. Axes shared across rows.

4.2.1. Maximize Expected Returns (MER)

Core performance. Under MER GRU improves materially over the Näıve allocator on
level metrics (Total return and CAGR) and is less negative on Sharpe/Sortino (Tables 2–4),
but daily mean outperformance vs. the benchmark is not significant (Table 5); variance is
higher than the benchmark (Table 6), consistent with deeper drawdowns.

11



Evaluating GRU powered trading systems: the case of cryptocurrency markets

Table 2: Core performance under MER. rf=0.

Strategy CAGR Ann. Vol Sharpe Max DD Calmar

GRU (forecast-driven) −15.35% 53.75% −0.29 −71.15% −0.22

Näıve (historical mean) −25.63% 50.74% −0.51 −73.66% −0.35

Capped benchmark −12.01% 48.78% −0.25 −66.82% −0.18

4.2.2. Maximize Quadratic Utility (QU)

Core performance. Under QU, the risk penalty dominates modest differences in ex-
pected returns in a small, capped universe: GRU and Näıve converge (identical metrics;
Table 3) and neither shows significant daily mean outperformance versus the benchmark
(Table 8); tails are slightly milder than the benchmark (Table 7).

Table 3: Core performance under QU. rf=0.

Strategy CAGR Ann. Vol Sharpe Max DD Calmar

GRU (forecast-driven) −14.26% 46.98% −0.30 −66.19% −0.22

Näıve (historical mean) −14.26% 46.98% −0.30 −66.19% −0.22

Capped benchmark −12.01% 48.78% −0.25 −66.82% −0.18

5. Concluding Remarks

Summary. We studied whether GRU forecasts can translate into portfolio value on a
constrained, investable crypto universe. Under Maximize Expected Returns (MER), the
GRU allocator consistently improved upon a näıve historical-mean strategy on level and risk
metrics, yet did not deliver statistically significant daily mean outperformance versus the
capped market benchmark. Under Maximize Quadratic Utility (QU), the GRU and näıve
allocations converged—consistent with a small, concentration-capped Top-5 universe where
the risk penalty dominates modest differences in expected returns. Forecast diagnostics
suggest usable but modest signal at daily frequency; residual shapes vary meaningfully by
coin and likely interact with portfolio constraints.

Limitations. This is an early, pre-cost study with deliberate scope limits: (i) a short
out-of-sample window dominated by a bearish regime; (ii) a concentrated Top-5 universe
with a 35% cap and weekly rebalancing; (iii) GRU tuning at 50 trials per model. These
choices reduce computation and look-ahead risk but may understate the model’s ceiling.

Priority extensions.

1. Scale the search and horizon. Increase hyperparameter trials (e.g., ≥ 200/model)
and extend the walk-forward to the present, so the evaluation spans multiple volatility
and market-direction regimes.

2. Regime awareness. Re-estimate and test by volatility/market regimes (e.g., low/high
realized vol; bull/bear). A simple approach is to stratify walk-forward blocks; a richer
one is a regime-switching or mixture-of-experts GRU with regime-conditioned loss.
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3. Broaden the universe. Move from Top-5 to at least Top-20 by market cap to reduce
concentration, increase cross-sectional degrees of freedom, and give the optimizer room
to express views subject to caps.

4. Utility-aligned training. Explore losses closer to the portfolio objective (e.g.,
asymmetric/DA-weighted MSE already used here; quantile or utility-weighted losses),
and calibrate risk-aversion via cross-validated utility rather than fixed parameters.

5. Robust risk and constraints. Test alternative covariance estimators and regular-
ization (e.g., Ledoit–Wolf, shrinkage targets), turnover penalties, tighter weight caps,
and rebalancing schedules.

6. Costs and frictions. Incorporate transaction costs, slippage, and borrow/venue
effects into backtests; report both pre- and post-cost results.

7. Architectural comparison. Train GRU, LSTM, and Transformer variants under
identical features, splits, loss, and HPO budget; enforce parameter/compute parity;
and compare both forecast and portfolio metrics with formal tests. For Transform-
ers, use finance-friendly encoders (causal/sliding-window or temporal-fusion style),
regularize (dropout/weight decay), and tune sequence length/attention window.

Closing. Within the constraints studied, GRU forecasts improved upon a näıve baseline
but did not consistently beat a concentration-aware market benchmark. The roadmap
above—more trials, longer horizon, regime conditioning, a broader universe, and utility-
aligned training—should clarify whether GRUs can deliver durable, investable edge in crypto
portfolios.
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Table 4: Additional statistics under MER. VaR/cVaR are daily.

Strategy Total Ret Win Rate VaR (95%) cVaR (95%)

GRU (forecast-driven) −38.54% 50.41% −5.52% −7.61%

Näıve (historical mean) −57.89% 50.82% −5.07% −7.12%

Capped benchmark −30.89% 49.86% −4.87% −7.61%

Table 5: Mean-difference tests under MER. Mean Diff = A−B in bp/day (two-sided).

Comparison N Mean Diff t p 95% CI (bp/day)

GRU vs. Näıve 736 5.6 1.45 0.148 [ –2.0, 13.3 ]

GRU vs. Benchmark 728 –0.5 –0.12 0.907 [ –8.3, 7.4 ]

Näıve vs. Benchmark 728 –6.2 –1.98 0.049 [ –12.4, –0.0 ]

Table 6: Diagnostics for MER: variance equality (F), distribution (KS), first-order stochas-
tic dominance (FSD).

Comparison F (p) KS (p) FSD

GRU vs. Näıve 1.12 (0.118) 0.020 (0.998) None

GRU vs. Benchmark 1.23 (0.006) 0.038 (0.655) None

Näıve vs. Benchmark 1.09 (0.228) 0.038 (0.655) None

Table 7: Additional statistics under QU. VaR/cVaR are daily.

Strategy Total Ret Win Rate VaR (95%) cVaR (95%)

GRU (forecast-driven) −36.21% 51.09% −4.65% −7.46%

Näıve (historical mean) −36.21% 51.09% −4.65% −7.46%

Capped benchmark −30.89% 49.86% −4.87% −7.61%

Table 8: Mean-difference tests under QU. Mean Diff = A−B in bp/day (two-sided).

Comparison N Mean Diff t p 95% CI (bp/day)

GRU vs. Näıve 736 0.0 – – [ 0.0, 0.0 ]

GRU vs. Benchmark 728 –1.3 -0.51 0.610 [ –6.2, 3.6 ]

Näıve vs. Benchmark 728 –1.3 -0.51 0.610 [ –6.2, 3.6 ]

Table 9: Diagnostics for QU : variance equality (F), distribution (KS), first-order stochastic
dominance (FSD).

Comparison F (p) KS (p) FSD

GRU vs. Näıve 1.00 (1.000) 0.000 (1.000) Identical

GRU vs. Benchmark 1.07 (0.386) 0.022 (0.995) None

Näıve vs. Benchmark 1.07 (0.386) 0.022 (0.995) None
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